Belock, J. (2021). Understanding over and under-representation via conditional probability. In L. Khadavi & K. Kirali (Eds.), Mathematics for Social Justice: Focusing on Quantitative Reasoning and Statistics (pp.13-20). MAA Press.
Book Description
Mathematics for Social Justice: Focusing on Quantitative Reasoning and Statistics offers a collection of resources for mathematics faculty interested in incorporating questions of social justice into their classrooms. The book comprises seventeen classroom-tested modules featuring ready-to-use activities and investigations for college mathematics and statistics courses. The modules empower students to study issues of social justice and to see the power and limitations of mathematics in real-world contexts of deep concern. The primary focus is on classroom activities where students can ask their own questions, find and analyze real data, apply mathematical ideas themselves, and draw their own conclusions. Module topics in the book focus on technical content that could support courses in quantitative reasoning or introductory statistics. Social themes include electoral issues, environmental justice, equity/inequity, human rights, and racial justice, including topics such as gentrification, partisan gerrymandering, policing, and more.
Boucher, C. (2021). The probability certain random quadratics have real roots. The Mathematical Gazette, 105(504), 410.
Boucher, C. (2021, July 26). Centroids of triangles with vertices on the unit circle. Wolfram Demonstrations Project. http://demonstrations.wolfram.com/CentroidsOfTrianglesWithVerticesOnTheUnitCircle/
Keats, J. (2021). Bright star. Trans. Poitevin, P., Periódico de Poesía. Retrieved from https://periodicodepoesia.unam.mx/texto/quien-fuera-estrella-como-tu-constante/
Keats, J. (2021). Upon first looking into Chapman's Homer. Trans. Poitevin, P., Periódico de Poesía. Retrieved from https://periodicodepoesia.unam.mx/texto/quien-fuera-estrella-como-tu-constante/
Presentación y versiones de Pedro Poitevin
He aquí dos sonetos del joven poeta John Keats (1795-1821), quizá el más talentoso de los románticos ingleses. De visita en casa de Leigh Hunt, Keats descubrió la versión de Chapman, y tras una noche de lectura intensa compuso su soneto “Al sumergirme por primera vez en el Homero de Chapman”, poema que luego fue publicado, a indicación de Hunt, en el Examiner, del cual Hunt era editor. El poema hace referencia a la sensación extraña de “llegar tarde” a descubrir algo inmenso. La lectura convencional revela una errata histórica, según la cual Keats ubica a Hernán Cortés en Darién, Panamá, descubriendo el Pacífico. Pero hay quien, como el crítico Charles J. Rzepka, considera que Keats imaginó una visita de Cortés a Darién en la que Cortés llega tarde y contempla por primera vez lo que años antes Núñez de Balboa había visto. El poema también hace referencia al descubrimiento de Urano, que data de 1781, pero de nuevo la referencia habla de un amateur, alguien que llega tarde. Es el único poema de amor a una traducción de que yo tenga noticia. En el segundo soneto, que en inglés se titula “Bright Star”, al elogiar la constancia de una estrella, John Keats capta la esencia de la concepción romántica del amor al que él mismo aspirase. Es uno de los más grandes poemas del romanticismo inglés.
Poitevin, P. (2021). A note on representations of Orlicz lattices. Positivity, 25, 973–985. https://doi.org/10.1007/s11117-020-00795-1
Abstract
In their book Randomly Normed Spaces, Haydon, Levy, and Raynaud proved that every sublattice of a Musielak-Orlicz space
Poitevin, P. (2021). Sueño de la cercanía. Contratiempo. Retrieved from https://contratiempo.org/ganadores-del-segundo-premio-de-poesia-juana-goergen/
Lim, K., & Yakes, C. (2021, January). Using mathematical equations to communicate and think about karma. Journal of Humanistic Mathematics, 11(1), 300–317. https://doi.org/10.5642/jhummath.202101.14
Abstract
Two equations are presented in this article to communicate a particular understanding of karma. The first equation relates future experiences to past and present actions. Although the equation uses variables and mathematical symbols such as the integral sign and summation symbol, it reads more like a literal translation of an English sentence. Based on the key idea in the first equation, a second equation is then created to highlight the viability of using math to communicate concepts that are not readily quantifiable. Analyzing such equations can stimulate thinking, enhance understanding of spiritual concepts, raise issues, and uncover tensions between our ordinary conceptions of external reality and transcendental aspects of spirituality.